If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+6w-60=0
a = 1; b = 6; c = -60;
Δ = b2-4ac
Δ = 62-4·1·(-60)
Δ = 276
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{276}=\sqrt{4*69}=\sqrt{4}*\sqrt{69}=2\sqrt{69}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{69}}{2*1}=\frac{-6-2\sqrt{69}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{69}}{2*1}=\frac{-6+2\sqrt{69}}{2} $
| 6=3(m+1) | | 6=3m+1 | | 12.8=3.3n+4.7n | | 21+52s=s−43 | | -z/7=8 | | 16x^2=254 | | 5=5-6r-6 | | 5/17=6/x | | 6x2=-20 | | 2x*8+0=216 | | 4(v-8)+3v=-39 | | -15.75x^2+184x+320=0 | | 1.05^x=1000 | | 2n+5+3n=30 | | 5(x+4)-7x=38 | | 8/9x-2/9=8 | | 6x+76=7x+143 | | 4+7b=7b-2(2+4b) | | 6x+76=7+143 | | 20-7x=-6x+21 | | -38+4b=-2(b+7) | | 6(u-6)-8u=-22 | | 8n+30=6(3n-5) | | 11-2x=317x | | 19-4b=-3(b+7) | | -11/24=2v+1/7/8 | | 39(w)+8=20 | | -19/2/9=1-13/9n | | 2(5p+2)=1+7p | | -8.8x+6.3=-94.02 | | -3-5(-6n+8)=23+8n | | -7+v/2.5=-1.36 |